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Abstract
The authors Song and Klauder (2003 J. Phys. A: Math. Gen. 36 8673–84)
present a generalized Darboux transformation, applicable to Hamiltonians
with linear terms in the momentum. We show here that this generalized
Darboux transformation is just the standard Darboux transformation in different
coordinates.

PACS numbers: 03.65.Ge, 03.65.Ca

1. Comment on the paper [4]

In [4], the following Hamiltonian is considered:

H0 = p2

2m
+ (Rp + pR) + V0, (1)

where R = R(x, t) is arbitrary, the mass m = m(t) depends on time and V0 = V0(x, t) is
the potential. The Hamiltonian (1) corresponds to the following time-dependent Schrödinger
equation (TDSE):

i�t − H0� = 0 ⇔ i�t +
1

2m
�xx + 2iR�x + (iRx − V0)� = 0. (2)

Here, the indices denote partial derivatives. It is well known [3] that the term ∼�x can be
removed by changing the dependent coordinate � as

� = exp

(
−2im

∫
R dx

)
�, (3)

which changes (2) into an equation for �:

i�t +
1

2m
�xx +

(
2

(
m

∫
R dx

)
t

+ 2mR2 − V0

)
� = 0. (4)
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This equation has the standard form of a TDSE (without terms in �x), to which the standard
first-order Darboux transformation is applicable. As is well known [1, 2], the n-fold iteration
of this first-order Darboux transformation has the form

� =
n∏

j=0

(
∂

∂x
− Wj−1

Wj

(
Wj

Wj−1

)
x

)
χ,

where χ is a solution of the transformed TDSE (given below) and Wj is the following Wronski
determinant:

Wj =

∣∣∣∣∣∣∣∣∣∣∣

u0 u1 · · · uj−1

(u0)x (u1)x · · · (uj−1)x

(u0)xx (u1)xx · · · (uj−1)xx

...
...

...
...

(u0)(x,j−1) (u1)(x,j−1) · · · (uj−1)(x,j−1)

∣∣∣∣∣∣∣∣∣∣∣
.

The index (x, j) stands for the j th partial derivative with respect to x and the functions uj are
solutions of the TDSE (4). The transformed TDSE for χ reads

iχt +
1

2m
χxx +

(
2

(
m

∫
R dx

)
t

+ 2mR2 − V0 +
1

m
(log(Wn))xx

)
χ = 0. (5)

Now, after having performed the Darboux transformation, we invert our change of coordinates
(3) for getting back to the original form of the TDSE (2). The inverted change of coordinate
reads obviously

χ = exp

(
2im

∫
R dx

)
�, (6)

which on substitution into equation (5) gives

i�t +
1

2m
�xx + 2iR�x +

(
iRx − V0 +

1

m
(log(Wn))xx

)
� = 0. (7)

Now we show that equation (7) and its solution are the same as the ones obtained in [4]. Let
us start with the equation. We must express the entries of the Wronskian Wn in terms of
solutions of equation (2) (instead of (4), as it is now). We just have to apply the same change
of coordinate as in (6) to all entries of Wj , which clearly transforms them into solutions of (2).
Let us abbreviate the change of coordinates by

T = exp

(
2im

∫
R dx

)
, (8)

and let the functions vj be solutions of equation (2). Then the uj and the vj are related to each
other by the change of coordinate T as

uj = T vj .

We get for the Wronskian Wn:

Wn =

∣∣∣∣∣∣∣∣∣∣∣

T v0 T v1 · · · T vn−1

(T v0)x (T v1)x · · · (T vn−1)x

(T v0)xx (T v1)xx · · · (T vn−1)xx

...
...

...
...

(T v0)(x,n−1) (T v1)(x,n−1) · · · (T vn−1)(x,n−1)

∣∣∣∣∣∣∣∣∣∣∣
.

Now we extract the term ∼T from each derivative:

(T vj )(x,k) = T (vj )(x,k) + rj,k,
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where rj,k = rj,k(x, t) stands for the remaining terms of the derivative. We get

Wn =

∣∣∣∣∣∣∣∣∣∣∣

T v0 T v1 · · · T vn−1

T (v0)x + r0,1 T (v1)x + r1,1 · · · T (vn−1)x + rn−1,1

T (v0)xx + r0,2 T (v1)xx + r1,2 · · · T (vn−1)xx + rn−1,2

...
...

...
...

T (v0)(x,n−1) + r0,n−1 T (v1)(x,n−1) + r1,n−1 · · · T (vn−1)(x,n−1) + rn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣
.

Next, we pull out the factor T from each row, leaving the determinant as

Wn = T n

∣∣∣∣∣∣∣∣∣∣∣∣

v0 v1 · · · vn−1

(v0)x + 1
T
r0,1 (v1)x + 1

T
r1,1 · · · (vn−1)x + 1

T
rn−1,1

(v0)xx + 1
T
r0,2 (v1)xx + 1

T
r1,2 · · · (vn−1)xx + 1

T
rn−1,2

...
...

...
...

(v0)(x,n−1) + 1
T
r0,n−1 (v1)(x,n−1) + 1

T
r1,n−1 · · · (vn−1)(x,n−1) + 1

T
rn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Finally, we perform some elementary operations on the latter determinant. We have

1

T
rj,1 = 1

T
Txvj .

Now, on multiplying the first row by Tx/T and subtracting it from the second row, the
Wronskian takes the form

Wn = T n

∣∣∣∣∣∣∣∣∣∣∣∣

v0 v1 · · · vn−1

(v0)x (v1)x · · · (vn−1)x

(v0)xx + 1
T
r0,2 (v1)xx + 1

T
r1,2 · · · (vn−1)xx + 1

T
rn−1,2

...
...

...
...

(v0)(x,n−1) + 1
T
r0,n−1 (v1)(x,n−1) + 1

T
r1,n−1 · · · (vn−1)(x,n−1) + 1

T
rn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we deal with the third row. We have

1

T
rj,2 = 2

1

T
Tx(vj )x +

1

T
Txxvj .

Hence, on multiplying the first row by Txx/T , multiplying the second row by 2Tx/T , adding
these rows and subtracting the result from the third row, we obtain

Wn = T n

∣∣∣∣∣∣∣∣∣∣∣

v0 v1 · · · vn−1

(v0)x (v1)x · · · (vn−1)x

(v0)xx (v1)xx · · · (vn−1)xx

...
...

...
...

(v0)(x,n−1) + 1
T
r0,n−1 (v1)(x,n−1) + 1

T
r1,n−1 · · · (vn−1)(x,n−1) + 1

T
rn−1,n−1

∣∣∣∣∣∣∣∣∣∣∣
.

After proceeding in a similar manner with the remaining rows, we come to

Wn = T n

∣∣∣∣∣∣∣∣∣∣∣

v0 v1 · · · vn−1

(v0)x (v1)x · · · (vn−1)x

(v0)xx (v1)xx · · · (vn−1)xx

...
...

...
...

(v0)(x,n−1) (v1)(x,n−1) · · · (vn−1)(x,n−1)

∣∣∣∣∣∣∣∣∣∣∣
. (9)
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We abbreviate the Wronskian on the right-hand side with Ŵ n. Thus, on inserting the result
(9) together with the explicit form of T as given in (8) into the potential term of equation (7),
we get

1

m
(log(Wn))xx = 1

m
(log(T nŴ n))xx

= 1

m

(
log

(
exp

(
2inm

∫
R dx

)
Ŵ n

))
xx

= 1

m

(
2inm

∫
R dx + log(Ŵ n)

)
xx

= 2inRx +
1

m
(log(Ŵ n))xx.

Finally, we insert the latter into our equation (7), yielding

i�t +
1

2m
�xx + 2iR�x +

(
iRx − V0 + 2inRx +

1

m
(log(Ŵ n))xx

)
� = 0.

This is exactly the result for the transformed equation in [4].
It remains to show that the solution of equation (7) is the same as the solution given in

[4]. According to [1], the solution of (5) reads

χ = Wn,�

Wn

,

where

Wn,� =

∣∣∣∣∣∣∣∣∣∣∣

u0 u1 · · · un−1 �

(u0)x (u1)x · · · (un−1)x �x

(u0)xx (u1)xx · · · (un−1)xx �xx

...
...

...
...

(u0)(x,n−1) (u1)(x,n−1) · · · (un−1)(x,n−1) �(x,n−1)

∣∣∣∣∣∣∣∣∣∣∣
.

Thus, the solution of (7) is given by (6), that is

� = 1

T
χ

= 1

T

Wn,�

Wn

. (10)

Clearly, the entries of these Wronskians are solutions of equation (4). As before, we express
them through solutions of equation (2) by multiplication of each entry with a factor T. On
performing the same operations as in the last paragraph we obtain

Wn,� = T n+1Ŵ n,� Wn = T nŴ n.

These results we insert into (10) and get

� = Ŵ n,�

Ŵ n

.

This coincides with the result in [4].
In summary, we have shown that the generalized Darboux transformation in [4] is the

standard Darboux transformation up to a change of the dependent coordinate.
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